Oxidation of Trimethylborane: Mass Spectral Evidence for the Intermediate $(CH_3)_2B_2O_3$ By Lawrence Barton*† and Gene T. Bohn (Department of Chemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121) Summary The reaction between trimethylborane and oxygen in the gas phase at 125° produces small amounts of the intermediate cyclic (CH₃)₂B₂O₃. CYCLIC H₂B₂O₃(I) is the final product in a slow non-explosive reaction of B_5H_9 and O_2 in the gas phase.¹ This reaction was later shown to occur via the intermediate boroxine, $H_3B_3O_3$ (II).² The same species has been observed as the initial product in reactions of oxygen with B_4H_{10} , BH_3CO , and BH_3PF_3 .³ The cyclic C_{2v} structure has been confirmed † Present address: Explosives Research and Development Establishment, Waltham Abbey, Essex. by microwave studies⁴ and i.r. spectroscopy.⁵ We report evidence for the formation of the hitherto unknown dimethyl derivative, tentatively named 3,5-dimethyl-1,2,4trioxa-3,5-diborolan. A re-investigation of the gas-phase reaction between B(CH₂)₃ and O₂ has been performed, using a mass-spectrometric molecular-leak continuous sampling technique. At ambient temperature the observed initial products are dimethylborylmethyl peroxide, trimethylboroxine, and smaller amounts of higher-molecular-weight species. However, when the reaction is carried out at 125°, new features are observed in the mass spectrum other than those which derive from thermal decomposition of the ambient-temperature products.⁶ Groupings appear at m/e 100, 99, 98 and m/e 85, 84, 83 with relative intensities 22.5, 13.5, 4.5 and 100, 52, 8.8, respectively, indicative of a B₂ species. The only reasonable assignments for the two groupings is that they represent the ions (CH₃)₂B₂O₃+ and CH₃B₂O₃+. Such ions cannot be produced from the fragmentation of highermolecular-weight cyclic species such as boroxines or alkoxyboroxines. The fragmentation patterns of the latter do not lead to the above type of ions. A correlation between the ion abundance ratios of M^+ and $(M - X)^+$ for the species $X_3B_3O_3$ and $X_2B_2O_3$ (X = CH₃ or H) is shown in the Table, together with the predicted values for (CH₃)₂B₂O₃ based on the relationship $$\frac{R[(\text{CH}_3)_3\text{B}_3\text{O}_3]}{R(\text{H}_3\text{B}_3\text{O}_3)} = \frac{R[(\text{CH}_3)_2\text{B}_2\text{O}_3]}{R(\text{H}_2\text{B}_2\text{O}_2)}$$ where $R = 100[I(M - X)^{+}/I(M^{+})]$, I = intensity, and M the parent ion. Monoisotopic mass spectra for the hydrogenated species were used; these are easily calculated from the normal spectra which are available in the literature.7 The correlation is seen to be reasonably good. Attempts to isolate the intermediate from the gaseous product mixtures by low-temperature fractionation and g.l.c. were unsuccessful. I.r. spectra in the gas phase were taken using compensation techniques. The cell in the reference beam contained the decomposition products of the ambient-temperature reaction between B(CH₃)₃ and O₂.6 The decomposition of dimethylborylmethyl peroxide yields essentially the same products at 25° and 125°. The bands observed below 1400 cm⁻¹ were at 1360, 1260, 1167, 1118, 928, and 590 cm⁻¹. Tentative assignments based on correlations with the shifts in bands in going from (CH₃)₃-B₃O₃ to H₃B₃O₃ and the spectrum of H₂B₂O₃ are that the 1360 and 1167 bands are the inplane ring stretching vibrations, 928 the assymmetrical B-CH₃ stretching frequency, and 590 the out-of-plane B-CH₃ bending frequency. | | TABLE | | |------------------|---------------------|---------------------------------| | Compound | I (M+) | $I (\mathbf{M} - \mathbf{X})^+$ | | $H_3B_3O_3$ |
21.00 | 100.0 | | $(CH_3)_3B_3O_3$ |
$12 \cdot 45$ | 100.00 | | $H_2B_2O_3$ |
41.2 | 100.00 | | $(CH_3)_2B_2O_3$ |
22.5 (observed) | 100.00 | | | 24.4 (calculated) | 100.00 | Experiments based on knowledge of the analogous H₂B₂O₃ species were carried out in order to obtain information concerning the mechanism of formation of (CH₃)₂B₂O₃. Isolation of (CH₃)₂BOOCH₃ and subsequent heating to 125° did not yield (CH₃)₂B₂O₃, nor did the reaction of O₂ with pure (CH₃)₃B₃O₃ at 125°, prepared in a separate experiment; there was no reaction in this case. Thus the reaction apparently does not proceed via mechanisms analogous to that suggested for the production of H₂B₂O₃ in the reaction between BH₃CO and O₂² nor that suggested for the production of $H_2B_2O_3$ in the reaction between $B_3O_3H_3$ and O_2 . One possible mechanism is that $(CH_3)_2B_2O_3$ is derived from partial pyrolysis of the initially formed adduct $B(CH_3)_3 \cdots$ O₂,8 at the higher temperature prior to the rearrangement of the latter to the peroxide. The electron-impact fragmentation of (CH₃)₂B₂O₃ gives rise to a relatively stable cyclic borenium ion CH₃B₂O₃+. It has been pointed out recently that these are rare and are normally expected to be linear.9 Apparently, H2B2O3 and its homologue (CH₃)₂B₂O₃, similar to the boroxines, both being six electron systems are stabilised by partial aromatic character. This has been suggested by Coulson for H₂B₂O₃¹⁰ and by Armstrong and Perkins for boroxines.11 We cannot rule out completely the possible importance of linear polymers in this system. These have been suggested in low-temperature studies12 and could possibly lead to the ions suggested above. Low-intensity groups of peaks are observed in the mass spectrum at m/e 174, 158, and 142. However, their intensity ratios do not correlate with those of the ions at m/e 100 and 85 in different runs. Nevertheless, owing to their stability, the ions (CH₃)₂B₂O₃+ could be formed by rearrangements of linear polymers in the ion source of the mass spectrometer, although this is unlikely. This research was supported by a grant from the National Science Foundation. (Received, November 4th, 1970; Com. 1914.) - J. F. Ditter and I. Shapiro, J. Amer. Chem. Soc., 1959, 81, 1022. L. Barton, C. Perrin, and R. F. Porter, Inorg. Chem., 1966, 5, 1446. L. Barton, J. Inorg. Nuclear Chem., 1968, 30, 1683. W. V. Brooks, C. C. Costain, and R. F. Porter, J. Chem. Phys., 1967, 47, 4186. F. A. Grimm and R. F. Porter, Inorg. Chem., 1969, 8, 731. Poscorposition of the major room temperature product (CH) Proceedings. - ⁸ F. A. Grimm and R. F. Porter, *Inorg. Chem.*, 1969, 8, 731. ⁶ Decomposition of the major room-temperature product $(CH_3)_2BOOCH_3$ yields $(CH_3O)_2BCH_3$ and $CH_3OB(CH_3)_2$, in a 6:1 mole ratio and minor amounts of hydrocarbons and $B(OCH_3)_3$; see R. C. Petry, Ph.D. Thesis, Ohio State University, 1958. ⁷ L. Barton, S. K. Wason, and R. F. Porter, *J. Phys. Chem.*, 1969, 69, 3160. ⁸ This was first suggested by J. R. Johnson and M. G. Van Campen, *J. Amer. Chem. Soc.*, 1938, 60, 121, and later by many others. ⁹ J. C. Kotz, R. J. Vander Zanden, and R. G. Cooks, *Chem. Comm.*, 1970, 923. ¹⁰ C. A. Coulson, *Acta Cryst.*, 1969, B25, 807. ¹¹ D. R. Armstrong and P. G. Perkins, *J. Chem. Soc.* (A), 1967, 790. ¹² L. Miller and J. T. Parts, *Inorg. Chem.*, 1964, 3, 1483.